South Africa remains at the forefront of international trolley assist development

- Cheaper and more environmentally-friendly alternative to diesel
- Siemens provides full turnkey, modular E-House solution
- 90% Siemens components ensures greater quality control

Open cast mining has always been an opportunity for operation of diesel-electric driven haul trucks, which are powered by a diesel-electric drive system consisting in principle of two electric drive motors, integrated through gears into the rear wheels of the trucks, an electric generator/alternator and a powerful diesel engine.

Trucks with electric drive systems can be fitted with a trolley assist system, while mechanical trucks cannot be operated on a trolley system. The Siemens truck trolley assist system involves the substitution of the diesel fuel by cheaper more ecological electric energy – writes Karl van Rensburg, Siemens South Africa Rail Electrification

Instead of generating electricity from the diesel engine and generator on the truck, the electric energy is supplied from a dedicated substation (E-House) and fed to the electric drive and motors of the truck via overhead feeder lines.

The overhead feeder wires (catenary) are fed from a transportable rectifier substation called an E-House while the transformers are installed on a base/skid. The modular design allows for ease of relocating the system as mine activities progresses over time.

The E-House and equipment are robust and designed to cope with rough
environmental and operational conditions, which include the continuous varying load conditions of between zero to 150%, depending on the duty cycle of the trucks.

Siemens provides the complete trolley assist solution, from the design stage, static calculations, supply and delivery of material to installation and commissioning of the entire system. Siemens has optimised the trolley system for mine operations, which has high demands for mechanical stability, operating reliability, low maintenance cost and a high availability.

Trolley assist has been utilised at mining sites around the world since the early 1980s, South Africa is regarded as a world-leader in installed capacity of this technology – having recently celebrated the launch of Siemens’ 4th generation trolley assist substation technology.

The 11 MW substation boasts an output of 1.8 kV of DC voltage and up to 10 000 A to ensure the running of haul trucks with a nominal gross vehicle weight of 550 000 kg and a payload of approximately 325 000 kg.

The substation can accommodate a duty cycle of running two fully loaded trucks continuously, and under overload conditions allows for three trucks for ten minutes or four trucks for one minute along the overhead feeder lines of approximately 850 m sections.

The substation is housed in a 6m x 3.3m x 3m E-house that weighs approximately 8500 kg, and includes the1.8kV DC switchgear, rectifiers, 33 kV ring main unit, cooling equipment, battery charger, control panel and the Siprotec AC - Sitras Pro DC feeder protection devices.

The control and protection of the entire substation is automated with a Siemens PLC and distributed Input/Output units interfaced via an industry standard Profinet fieldbus which significantly reduces the number of interface cables between equipment and allowing for the effective control and monitoring of the substation and equipment via a touch panel or from a remote location.
Cooling of the E-House is provided by two inverter air conditioners, keeping the inside temperatures between 18 °C to 22 °C under all operating conditions.

Another breakthrough is that 90% of components in the E-House are entirely manufactured by Siemens, compared to past E-Houses that contained approximately 30% Siemens components. Sourcing nearly all of the components from the Siemens portfolio, guarantees compliance with International standards, greater quality control and improved functionality.

A further major benefit when compared with the previous generation of E-Houses is the improved safety features, as a result of the modular design of the AC/DC switchgear and rectifier modules that prevent direct access to live high voltage components.

Correct switching sequences and DC feeder line test procedures can now be implemented with failsafe software procedures, doing away with mechanical interlock keys.

From humble beginnings

In its early days, trolley assist involved two single copper contact bars, one for each of the positive and negative supply feeds, and heavy duty current collecting poles. Electric power was provided to the overhead lines via a roadside rectifier substation rated at a maximum power output of 3 MW.

In these first generation traction substations for trolley assist, the traction substations were fed from the public network, (typically 3 phase 11 kV to 36 kV AC) and converted to the 1200 V DC voltage required by the trucks, which were equipped with DC motors.

These substations were generally constructed in two parts (a transformer skid and E-House) for portability, making it easy to relocate them as mining operations developed. The equipment for the substations was largely pre-installed when
delivered to the mine. This results in a shorter installation and commissioning period.

In the second-generation trolley assist system, the substation power increased to 5 MW, supplied from a medium voltage transformer (11 kV or 33 kV AC).

It also consisted of AC switchgear, rectifier, DC switchgear, parallel feeder contact lines for the positive and negative poles, and a pantograph with sensor system to guide the truck driver along the haul road.

With a trolley DC voltage range between 1200 – 1600 V DC, it was possible to power dump trucks with a payload of around 170 000 kg.

The third-generation substation technology gave rise to the demand for bigger trucks and the introduction of AC wheel motors. Output power increased to 10 MW with a nominal feeder voltage of 2600 V DC.

The change from DC wheel motors to AC wheel motors and the associated drive technology significantly reduces costs and increased availability due to less scheduled maintenance. The higher torque produced by the AC motors and drive system means that the trucks can accelerate faster and reach higher speeds when carrying heavier loads.

Faster and more sophisticated DC feeder protection relays were introduced to protect feeder lines against thermal overload and short circuit faults. Logic control systems were introduced to allow the substations to be fully automated, with auto reclose DC feeder breakers which further reduced down time in the event of an external fault on the feeder lines.

Advantages of trolley assist

Normally the speed of a truck on a gradient is limited by diesel engine power. If the same truck could get more power by connecting to an overhead electric feeder line while travelling on an uphill gradient, it could sustain a higher speed. The diesel
engine would be idling, and fuel consumption would be reduced by 95%, greatly reducing noise and emissions to the environment.

Billions of litres of diesel are consumed annually by the global mining industry, which is under severe pressure from weak commodity prices. Loaded haul trucks on uphill gradients typically accounts for 70 – 80% of a truck’s total fuel consumption.

A trolley assist solution is installed on any uphill stretch between the loading area (pit) and offloading points (dump or process plant).

With the inclusion of the electric drives, the electric power supplied to the wheel motors of the haulage trucks enables the vehicles to move faster uphill, which results in quicker turnaround times and higher productivity for the mining operation.

For example, if the duty cycle time is reduced by 20% as a result of the increase in speed on the uphill gradient, a fleet of 32 trucks on trolley can produce the same results as 40 trucks operating on diesel. This results in reduced capital costs if the study is done at the feasibility stage.

Engine operating and maintenance costs are directly linked to hours of operation of the haul trucks and using trolley assist on gradients reduces the cycle time of the haulage trucks, thus increasing the intervals between maintenance schedules.

The technology has been supplied to open cast mines in South Africa, Namibia, the DRC, Zambia and as far afield as North America. New business interest has come from mining companies in Botswana, DRC and Sweden.

The goal of mining corporations is always to reduce the cost per ton of the commodity produced over the life cycle of the assets, and the trend is clearly toward larger trucks, shorter cycle times with a leaner fleet and overall lower cost of ownership, all of which can be achieved by the benefits of a trolley assist solution.
This E-House concept is being promoted to the rail customers. Recently, a 5 MW, 3 kV DC containerised substation was commissioned in the Northern Cape. This E-House solution was designed to comply with the specifications of the rail customer.

The recent developments in the 11 MW DC E-House solution and the 5 MW, 3 kV DC solutions positions Siemens to approach the international markets in terms of exporting the solution.

Contact for journalists
Keshin Govender
Tel.:+27 11 652 2000; e-mail: keshin.govender@siemens.com

Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world’s largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis. Further information is available on the Internet at www.siemens.com.

This document contains statements related to our future business and financial performance and future events or developments involving Siemens that may constitute forward-looking statements. These statements may be identified by words such as “expect,” “look forward to,” “anticipate,” “intend,” “plan,” “believe,” “seek,” “estimate,” “will,” “project” or words of similar meaning. We may also make forward-looking statements in other reports, in presentations, in material delivered to shareholders and in press releases. In addition, our representatives may from time to time make oral forward-looking statements. Such statements are based on the current expectations and certain assumptions of Siemens’ management, of which many are beyond Siemens’ control. These are subject to a number of risks, uncertainties and factors, including, but not limited to those described in disclosures, in particular in the chapter Risks in the Annual Report. Should one or more of these risks or uncertainties materialize, or should underlying expectations not occur or assumptions prove incorrect, actual results, performance or achievements of Siemens may (negatively or positively) vary materially from those described explicitly or implicitly in the relevant forward-looking statement. Siemens neither intends, nor assumes any obligation, to update or revise these forward-looking statements in light of developments which differ from those anticipated.